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Tutorial on Translating between GLIMMPSE Power Analysis and Data Analysis 
 

Preface 
 

Aligning power or sample size analysis with planned data analysis helps to avoid 
the problems of 1) sample size too small to detect important alternative hypotheses 
and 2) sample size so large that the design squanders precious resources (Muller et 
al., 1992).  

In this tutorial, we describe some of the standard study designs for which the 
GLIMMPSE software provides power and sample size analysis.  We examine the 
statistical models commonly used for analyzing data collected under those designs. 
We also provide an illustrative data analysis example for each design. Finally, we show 
how estimates from data analysis can be used as inputs for power and sample size 
analysis using GLIMMPSE. 

 
Designs 
 

Cross-sectional (t-test, ANOVA) 
In cross-sectional designs we assume that individual observations are randomly 

sampled from one of two or more (k) well-characterized populations and that the 
observations within a sample are independent of each other, i.e. that there is no 
clustering between subjects or units of observation. We further assume that the 
underlying distribution of the observations is normal or approximately so. Finally, we 
usually assume that variances across populations are equal, σ1

2 = σ2
2= … = σk

2. Data 
can be analyzed with a 2-sample t-tests if the variances are equal, a two sample t-test 
for unequal variances if the variances are not equal, the one-way ANOVA, or by a 
General Linear Model approach (see Tutorials on 2-sample t-test with Equal or 
Unequal Variances, and the Univariate Model – One-way ANOVA). 

 
Repeated Measures (paired t-test, longitudinal) 
In repeated measures or longitudinal designs we assume that individual 

observations are randomly sampled from one or more (k) well-characterized 
populations and that the observations within a sample are correlated across time or 
condition within subjects or units of observation. We further assume that the underlying 
distribution of the observations is normal or approximately so.  We usually assume that 
variances across populations are equal, σ1

2 = σ2
2= … = σk

2. The covariance model of 
the observations within a subject over time is assumed to be unstructured. This means 
that the variances over time can be unequal and the covariances between pairs of 
observations on a subject can also vary with distance in time. Data can be analyzed 
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with a General Linear Multivariate Model or a Linear Mixed Model (see Tutorials on 
Paired t-test and Repeated Measures). 

 
Clustered (hierarchical structure and between group differences) 
In clustered or multilevel designs we assume that individual observations are 

randomly sampled from one or more (k) well-characterized populations and that the 
observations within a sample are clustered within subjects or units of observation. We 
further assume that the underlying distribution of the observations is normal, or 
approximately so, and that the covariance structure of observations within a cluster is 
compound symmetry, i.e. any two observations in the same cluster have the same 
correlation, ρ. Finally, we usually assume that variances across populations are equal, 
σ1

2 = σ2
2= … = σk

2. Data can be analyzed with a General Linear Multivariate Model or a 
Linear Mixed Model (see Tutorial on Clustered and Multilevel Designs). 

  
Designs with a (baseline) covariate (ANCOVA, randomized studies, 
longitudinal) 
Both cross-sectional and longitudinal designs can include covariate adjustment. 

In cross-sectional designs we assume that individual observations are randomly 
sampled from one of two or more (k) well-characterized populations and that the 
observations within a sample are independent of each other, i.e. that there is no 
clustering between subjects or units of observation. In repeated measures or 
longitudinal designs we assume that individual observations are randomly sampled 
from one or more (k) well-characterized populations and that the observations within a 
sample are correlated across time or condition within subjects or units of observation. 
The role of a covariate can be to reduce bias in a cross-sectional observational study 
or to increase precision in a (longitudinal) randomized study. We further assume that 
the underlying distribution of the observations is normal or approximately so. We 
usually assume that variances across populations are equal, σ1

2 = σ2
2= … = σk

2. 
Finally, we assume that the covariate is normally distributed and that its covariance 
with the longitudinal observations can vary with time. Data can be analyzed with a 
General Linear Multivariate Model or a Linear Mixed Model (see Tutorials on ANCOVA 
and ANCOVA with Repeated Measures). 

 
On our website we provide tutorials for a variety of power and sample size 

scenarios, including scenarios for the four study designs listed above. Below, we 
illustrate each of the designs with an example. For each example we provide a 
description of the data, the hypothesis to be tested, an analysis approach, test 
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statistics and reference distributions, appropriate SAS code and results, and from 
those results the inputs that would be used to inform the corresponding power analysis 
using GLIMMPSE. It should be appreciated that issues concerning statistical 
uncertainty arise when previously collected data are used to inform power and sample 
size analyses. Taylor and Muller (1995) present a discussion of the uncertainty in 
power and sample estimates that arise from sampling variability, and these ideas are 
used in the GLIMMPSE Tutorial on the Univariate Model for a One-way ANOVA. A 
discussion of bias resulting from using censored study results to inform power and 
sample size estimation is presented in Taylor and Muller (1996). 

 
Developing a Data Analysis Plan - Examples 
 

Cross-sectional (t-test, ANOVA)  
There are many online examples of analyses for cross-sectional data with 2 

or more group means to be compared. The two links below include scenarios, 
data, SAS code and output. The first link presents a two-sample t-test and the 
second a two-way ANOVA. The data regard exam scores in 200 high school 
students. 

http://www.ats.ucla.edu/stat/sas/output/ttest.htm 
http://www.ats.ucla.edu/stat/sas/output/sas_glm_output.htm 
 The sampling unit in each scenario is a student in high school. 
 When comparing female to male students on the exam writing score 

a 2-sample t-test or a General Linear Model can be used for analysis. 
When cross classifying the observations by sex and academic 
program, a General Linear Model is appropriate. 

 If these data were being used as exemplary data to inform a power 
analysis that would replicate the independent sample t-test design 
above, the information that would be input into GLIMMPSE using 
Guided Mode would be the following: 

• Study groups: Multiple (2);Sex – Female, Male,  
• No Covariate 
• No Clustering 
• Relative Group Sizes: Sex – 1:1; Smallest Group Size = 100  
• Response variable: Writing score 
• No Repeated measures 
• Means: Female =  55, Male = 50 
• Scale Factors for Means: Yes 

http://www.ats.ucla.edu/stat/sas/output/ttest.htm
http://www.ats.ucla.edu/stat/sas/output/sas_glm_output.htm
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• Variability:  SD = 10.3 (the largest value observed across the 2 
groups, to be conservative)   

• Sigma Scale Factors: Yes 
• Statistical test: Any of the tests, as they will yield equivalent 

results 
• Confidence Intervals: No 
• Power Curve: No 

 If these data were being used as exemplary data to inform a power 
analysis that would replicate a two-way ANOVA with Sex and 
Program as factors, as above, the information that would be input into 
GLIMMPSE using Guided Mode would be the following: 

• Study groups: Multiple (6); Sex – Female, Male, and Program – 
1, 2, 3 

• No Covariate 
• No Clustering 
• Relative Group Sizes: Female – 1:2:1, Male – 1:2:1; Smallest 

Group Size = 21  
• Response variable: Writing score 
• No Repeated Measures 
• Means: Female – Program 1 = 53.2, Program 2 = 57.6, 

Program 3 = 51; Males – Program 1 = 49.1, Program 2 = 54.6, 
Program 3 = 41.8 

• Variability:  SD = 10.4 (the largest value observed across the 6 
groups, to be conservative) 

• Statistical test: Any of the tests as they will yield equivalent 
results 

• Confidence Intervals: No 
• Power Curve: No  

 
Repeated Measures (paired t-test, longitudinal data)  

The data for this example come from a chelation trial for blood lead 
(mcg/dL) in children (Treatment of Lead-exposed Children (TLC Study Group, 
2000; Fitzmaurice, Laird and Ware, 2011). One hundred children were randomly 
assigned to either chelation treatment vs. placebo in a 1:1 ratio. Blood lead was 
measured on 4 occasions: Baseline, Week 1, Week 4 and Week 6. 
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 The independent sampling unit is the child, with repeated blood lead 
levels clustered within a child. 

 No assumptions are made about the correlation between blood lead 
levels measured over time within a child, i.e. the covariance matrix is 
Unstructured. For the four repeated blood lead measures in this 
example the assumed covariance matrix would look like this: 

1 2 3

1 4 52

2 4 6

3 5 6

1
1

1
1

ρ ρ ρ
ρ ρ ρ

σ
ρ ρ ρ
ρ ρ ρ

 
 
 
 
 
 

  

 A Linear Mixed Model for repeated measures can be fit to the data as 
well as a General Linear Multivariate Model. 

 The data can be found on the website for the Fitzmaurice, Laird and 
Ware text: http://www.hsph.harvard.edu/fitzmaur/ala2e/. Click on 
Datasets and look for Treatment of Lead Exposed Children Trial 
(N=100). Download the SAS file: tlc.sas7bdat.  

 The SAS code below shows how to, first, transpose the data from a 
wide to a long format and then how to analyze the data using a Linear 
Mixed Model assuming an Unstructured covariance matrix for the four 
repeated measures within a child. A response profile approach is 
illustrated in which the mean blood lead in each group at each time is 
estimated. This is known as a maximal or saturated model and tests 
the treatment x time interaction. 

 
Click here to view the SAS code to analyze these data. 
Click here to view the output generated by this code. 

 
 If these data were being used as exemplary data to inform a power 

analysis that would replicate the Repeated Measures design above, 
the information that would be input into GLIMMPSE using Matrix 
Mode would be the following: 

• Design Essence: 2 x 2, 1 0
0 1
 
 
 

, for the 2 groups to be compared 

• No Covariate 
• Smallest Group Size: 50  
• Coefficients: 

http://www.hsph.harvard.edu/fitzmaur/ala2e/
http://com-hop-sample-size-shop.sites.medinfo.ufl.edu/files/2012/12/Repeated-Measures-Data-Analysis-Example.sas
http://com-hop-sample-size-shop.sites.medinfo.ufl.edu/files/2012/12/Repeated-Measures-Data-Analysis-Example.pdf
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o Beta Coefficients: 2 x 4 matrix, 26.6 13.5 15.5 20.7
26.3 24.7 24 23.6
 
 
 

; 

these are the group-specific means of blood lead at 
each time 

o Beta Scale Factors: 0.5, 1, 2 
• Hypothesis 

o Between Participant Contrast: 1 x 2 matrix, [ ]1 1− , for 
the difference in means of blood lead between the 
succimer and placebo groups 

o Within Participant Contrast: 4 x 3 matrix, 

1 1 1
1 0 0
0 1 0
0 0 1

 
 − 

− 
 − 

, 

for the 3 contrasts between week 1 and baseline, week 
4 and baseline, and week 6 and baseline 

o Null Hypothesis Matrix: 1 x 3 matrix, [ ]0 0 0 , for no 
difference in blood lead between groups at each 
follow-up time compared with baseline 

• Variability 

o Error Covariance, (4 x 4 matrix), 

19 20 22
35 30

3

25
19 44
20 35 47
22 30 30 58

0

 
 
 
 
 
 

, the R 

matrix from the SAS output, containing the variances 
and covariances of blood lead across time from 
baseline to week 6 

o Sigma Scale Factors: 0.5, 1, 2 
• Options 

o Statistical Test: Hotelling-Lawley Trace (Muller et al., 
1992 provide guidance on when some of the other 
available tests can be applied. These guidelines are 
illustrated in the Tutorial on Selecting a Test.) 

o Confidence Intervals: No 
o Power Curve: No  
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 If these data were being used as exemplary data to inform a power 
analysis that would replicate the Paired t-test of the change in blood 
lead between Baseline and Week 1 in the group treated with 
succimer (only), as above, the information that would be input into 
GLIMMPSE using Matrix Mode would be the following: 

• Design Essence: 1 x 1, [ ]1 , for the single group to be analyzed 
• No Covariate 
• Smallest Group Size: 50  
• Coefficients: 

o Beta Coefficients: 2 x 4 matrix, [ ]26.6 13.5 ; these are 
the succimer group means at baseline and week 1 

o Beta Scale Factors: 0.5, 1, 2 
• Hypothesis 

o Between Participant Contrast: 1 x 1 matrix, [ ]1 , i.e. a 
single group is to be analyzed 

o Within Participant Contrast: 2 x 1 matrix, 1
1

 
 − 

, for the 

contrast between blood lead means at week 1 and 
baseline 

o Null Hypothesis Matrix: 1 x 1, [ ]0 , i.e. there is no 
difference in mean blood lead levels between week 1 
and baseline 

• Variability 

o Error Covariance, (2 x 2) matrix, 25
19 44

19 
 
 

, the R matrix 

in SAS output containing the variances and covariance 
of blood lead at baseline and week 1 

o Sigma Scale Factors: 0.5, 1, 2 
• Options 

o Statistical Test: Hotelling-Lawley Trace (Muller et al., 
1992 provide guidance on when some of the other 
available tests can be applied. These guidelines are 
illustrated in the Tutorial on Selecting a Test.) 

o Confidence Intervals: No 
o Power Curve: No  
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Clustered (hierarchical structure and between group differences) 
The data for this example are from the state of Georgia’s Vital Statistics 

unit, specifically birthweight for infants born to 200 mothers, with 5 children per 
mother (Vittinghoff et. al., 2012). 

 In this example mothers (Level 2) are the independent sampling unit and 
babies (Level 1) are clustered within a mother. 

 The assumed covariance structure is compound symmetry in which the 
correlation (ρ) between birthweight values for any two children born to 
the same mother is the same, and this correlation is the same for all 
mothers. Since there are five children per mother in the dataset, the 
covariance matrix would look like this:     

2

1
1

1
1

1

ρ ρ ρ ρ
ρ ρ ρ ρ

σ ρ ρ ρ ρ
ρ ρ ρ ρ
ρ ρ ρ ρ

 
 
 
 
 
 
  

 

 
 Two different, but equivalent, mixed model formulations can be used to 

fit the data: a Variance Components model with a Random Intercept, or 
a Repeated Measures model with a Compound Symmetric structure for 
the covariance matrix of observations within a cluster. 

 The data can be downloaded from the website for the Vittinghoff et al. 
text: http://www.epibiostat.ucsf.edu/biostat/vgsm/data.html. Look for Ch. 
8, gababies, and the SAS link. This will download a SAS dataset called 
gababies.sas7bdat. 

 Below is the code needed to fit the Random Intercept model using SAS 
PROC MIXED and to compare the birthweights for mothers whose first 
child was born when she was 20 years of age or younger vs. older than 
20. 

 
Click here to view the SAS code to analyze these data. 
Click here to view the output generated by this code. 
 

 If these data were being used as exemplary data to inform a power 
analysis that would replicate the design above for clustered data with 2 
levels, the information that would be input into GLIMMPSE using Guided 
Mode would be the following: 

http://www.epibiostat.ucsf.edu/biostat/vgsm/data.html
http://com-hop-sample-size-shop.sites.medinfo.ufl.edu/files/2012/12/Clustered-Data-Analysis-Example.sas
http://com-hop-sample-size-shop.sites.medinfo.ufl.edu/files/2012/12/Clustered-Data-Analysis-Example.pdf
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• Study groups: Multiple (2); Age - ≤ 20 years old, > 20 years old 
• No Covariate 
• Clustering: Mothers, 5 children per mother, intracluster correlation 

of .39 (from the V correlation matrix in the SAS output) 
• Size of the smallest group: 27 (number of mothers over 20 years 

of age) 
• Response variable: Birthweight, no repeated measures 
• Hypothesis: Main effect of Age 
• Means: 3114, 3273g 
• Scale Factors for Means: Yes 
• Variability: 450.8g (= √203229g2, the within group variance) 
• Sigma Scale Factors: Yes  
• Statistical test: Hotelling-Lawley Trace (Muller et al., 1992 provide 

guidance on when some of the other available tests can be 
applied. These guidelines are illustrated in the Tutorial on 
Selecting a Test.) 

• Confidence Intervals: No 
• Power Curve: No   

 
Designs with a baseline covariate (ANCOVA, randomized studies) 

The data for this example come from a chelation trial for blood lead 
(mcg/dL) in children (Treatment of Lead-exposed Children (TLC Study Group, 
2000; Fitzmaurice, Laird and Ware, 2011). One hundred children were randomly 
assigned to either chelation treatment vs. placebo in a 1:1 ratio. Blood lead was 
measured on 4 occasions: Baseline, Week1, Week 4 and Week 6. For this 
example, baseline blood level will be included as a covariate when looking at 
post-treatment changes in blood lead from baseline between the treatment 
groups over time. 

 The independent sampling unit is the child, with repeated blood lead 
levels clustered within a child. 

 No assumptions are made about the correlation between changes in 
blood lead levels measured over time within a child, i.e. the 
covariance matrix is Unstructured. For the three repeated blood lead 
change measures in this example the assumed covariance matrix 
would look like this: 



GLIMMPSE Tutorial: From Power Analysis to Data Analysis and Back        10 
 

1 2
2

1 3

2 3

1
1

1

ρ ρ
σ ρ ρ

ρ ρ

 
 
 
  

  

 A Linear Mixed Model for repeated measures can be fit the data as 
well as a General Linear Multivariate Model. 

 The data can be found on the website for the Fitzmaurice, Laird and 
Ware text: http://www.hsph.harvard.edu/fitzmaur/ala2e/. Click on 
Datasets and look for Treatment of Lead Exposed Children Trial 
(N=100). Download the SAS file: tlc.sas7bdat.  

 The SAS code below shows how to, first, transpose the data from a 
wide to a long format, create the change scores, center the baseline 
blood lead values, and then shows how to analyze the data using a 
Linear Mixed Model assuming an Unstructured covariance matrix for 
the three repeated change scores in blood lead within a child. A 
response profile approach is illustrated in which the mean change in 
blood lead for each group at each time is estimated. This is known as 
a maximal or saturated model and can be used to tests the treatment 
x time interaction. A 3 df test of the main effect and interaction is 
needed to test the effect of succimer on blood lead over time. 

 
Click here to view the SAS code to analyze these data. 
Click here to view the output generated by this code. 
 

 If these data were being used as exemplary data to inform a power 
analysis that would replicate the Repeated Measures ANCOVA 
design above, the information that would be input into GLIMMPSE 
using Matrix Mode would be the following: 

• Design Essence: 2 x 2 matrix, 1 0
0 1
 
 
 

, for the 2 groups to be 

compared 
• Covariate: Check Control for a single, normally distributed 

predictor 
• Smallest Group Size: 50  

 
 
 
 

http://www.hsph.harvard.edu/fitzmaur/ala2e/
http://com-hop-sample-size-shop.sites.medinfo.ufl.edu/files/2012/12/Repeated-Measures-w-Baseline-Covariate-Data-Analysis-Example.sas
http://com-hop-sample-size-shop.sites.medinfo.ufl.edu/files/2012/12/Repeated-Measures-w-Baseline-Covariate-Data-Analysis-Example.pdf
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• Coefficients: 

o  Beta Coefficients: 2 x 4 matrix, 13 11 5.8
1.6 2.2 2.6
− − − 

 − − − 
; 

these are the group-specific mean changes in blood 
lead at each time vs. the baseline 

o Beta Scale Factors: 0.5, 1, 2 
• Hypothesis 

o Between Participant Contrast: 1 x 2 matrix, [ ]1 1− , for 
the difference in means of blood lead between the 
succimer and placebo groups 

o Within Participant Contrast: 3 x 3 matrix, 
.33 1 1
.33 1 0
.33 0 1

 
 − 

−  

, 

for the main effect of treatment at week 1 and the 2 
contrasts between week 4 and week 1, and between 
week 6 and week 1 

o Null Hypothesis Matrix: 1 x 3, [ ]0 0 0 , i.e. no 
difference in the change in blood lead levels from 
baseline between groups at each follow-up time 

• Variability 

o Error Covariance, (3 x 3 matrix), 
30

20.9 32
13 13.5 40

20.9 13
13.5

 
 
 
  

; this 

is the R matrix from SAS output, containing the 
variances and covariances of changes in blood lead 
levels from baseline for week 1, week 4, and week 6 

o Variance of Covariate: 25 

o Covariance of Outcomes and Covariate: 
18
19
22

 
 
 
  

 

o Sigma Scale Factors: 0.5, 1, 2 
• Options 

o Statistical Test: Hotelling-Lawley Trace (Muller et al., 
1992 provide guidance on when some of the other 
available tests can be applied. These guidelines are 
illustrated in the Tutorial on Selecting a Test.) 
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o Power Method: Unconditional (the Tutorial on 
ANCOVA provides more detail on the Quantile Power 
Method) 

o Confidence Intervals: No 
o Power Curve: No  
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