Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups

Anna E. Barón, Keith E. Muller, Sarah M. Kreidler, and Deborah H. Glueck

Acknowledgements:

The project was supported in large part by the National Institute of Dental and Craniofacial Research under award NIDCR 1 R01 DE020832-01A1. The content is solely the responsibility of the authors, and does not necessarily represent the official views of the National Cancer Institute, the National Institute of Dental and Craniofacial Research, nor the National Institutes of Health.

Tutorial 5: Power and Sample Size for One-way Analysis of Variance (ANOVA) with Equal Variances Across Groups

Preface

Power is the probability that a study will reject the null hypothesis. The estimated probability is a function of sample size, variability, level of significance, and the difference between the null and alternative hypotheses. Similarly, the sample size required to ensure a pre-specified power for a hypothesis test depends on variability, level of significance, and the null vs. alternative difference. In order to understand our terms, we will review these key components of hypothesis testing before embarking on a numeric example of power and sample size estimation for a one-way ANOVA.

Overview of Power Analysis and Sample Size Estimation

A *hypothesis* is a claim or statement about one or more population parameters, e.g. a mean or a proportion. A *hypothesis test* is a statistical method of using data to quantify evidence in order to reach a decision about a hypothesis. We begin by stating a *null hypothesis*, H_0 , a claim about a population parameter, for example, the mean; we initially assume the null hypothesis to be true. H_0 is where we place the burden of proof for the data; it is usually what an investigator hopes to *disprove* if the evidence in the data is strong enough. In the one-way analysis of variance, the goal is to determine if the samples have the same average. The null hypothesis H_0 is then a simple statement about the means being equal.

As an example, let us say that a randomized three-arm trial in post-surgery/radiation head and neck cancer patients is planned, with a 1:1:1 ratio of resveratrol (an antioxidant found in the skins of grapes and other fruits): another supplement: placebo. The primary endpoint is change in Ki-67, a measure of cell proliferation (% of cells staining for Ki-67). Ki-67 is measured in tumors after surgery and before the administration of resveratrol, the other supplement, or placebo. Measurements are obtained from biopsies after 6 months on treatment. The goal is to compare mean change in Ki-67 across treatments, i.e. $\mu_{\Delta Ki-67, resveratrol}$ vs. $\mu_{\Delta Ki-67, other supplement}$ vs. $\mu_{\Delta Ki-67, i.e.}$ μ_{lacebo} . The null hypothesis is that there is no difference in mean change in Ki-67, i.e. H_0 : $\mu_{\Delta Ki-67, resveratrol} = \mu_{\Delta Ki-67, placebo} = \mu_{\Delta Ki-67, placebo}$. An opposing, or alternative hypothesis H_1 is then stated, contradicting H_0 , e.g. H_1 : at least one of the mean changes is different from the other two. If the mean changes from the three samples are sufficiently different a decision is made to *reject the null* in favor of the alternative hypothesis. If the sample mean changes are similar to each other, the null hypothesis cannot be rejected, but neither can a claim be made that the hypothesis is unequivocally true.

Because of sampling there is inherent uncertainty in the conclusion drawn from a hypothesis test. Either a correct or an incorrect decision will be made, and the goal is to minimize the chances of making an incorrect one. The probability of rejecting a true null hypothesis, called Type I Error, is denoted by α . The probability of failing to reject a false null hypothesis, called Type II Error, is denoted by β . The possible outcomes of a hypothesis test are summarized in the table below along with the conditional probabilities of their occurrence.

	State of Nature		
Hypothesis Testing Decision	H _o True	H₁ True	
	True negative	False negative	
Fail to reject H ₀	A correct decision	A Type II Error	
	Prob(True negative) =	Prob(False negative) =	
	1-α	р	
	False positive	True Positive	
Reject H ₀	A Type I Error	A correct decision	
	Prob(False positive) = α	Prob(True positive) = 1-β	

A Type I error occurs when H_0 is incorrectly rejected in favor of the alternative (i.e. H_0 is true). A Type II error occurs when H_0 is not rejected but should have been (i.e. H_1 is true). To keep the chances of making a correct decision high, the probability of a Type I error (α , the level of significance of a hypothesis test) is kept low, usually 0.05 or less, and the power of the test (1- β , the probability of rejecting H_0 when H_1 is true) is kept high, usually 0.8 or more. When H_0 is true, the power of the test is equal to the level of significance. For a fixed sample size, the probability of making a Type II error is inversely related to the probability of making a Type I error. Thus, in order to achieve a desirable power for a fixed level of significance, the sample size will generally need to increase.

Other factors that impact power and sample size determinations for a one-way ANOVA include variability as summarized by σ_1^2 , σ_2^2 and σ_3^2 where σ_1 , σ_2 and σ_3 are the standard deviations in the three populations; and the differences among the population means under the null hypothesis and under the alternative. In practice, σ_1^2 , σ_2^2 and σ_3^2 can be difficult to specify. Previous work reported in the literature is a good source of information about variability, but sometimes a pilot study needs to be carried out in order to obtain a reasonable estimate. Specifying the magnitude of the differences you wish to detect between the null and alternative hypothesis varies by consideration of subject matter. The importance of a difference varies by discipline and context.

The following summarizes the interrelationships of power, sample size, level of significance, variability and detectable difference:

To increase power, 1-β:

- Increase: Required Sample Size, n; Detectable Difference, between the mean under H₀ and H₁; Level of significance, α;
- Decrease: Variability, σ_1^2 , σ_2^2 , σ_3^2

To reduce required sample size, $n = n_1 + n_2$ -

- Increase: Detectable Difference, between the mean under H_0 and H_1 ; Level of significance, α
- Decrease: Variability, σ_1^2 , σ_2^2 , σ_3^2 ; power, 1- β

Uncertainty in specifications of mean difference, variability

For a discussion of the role of uncertainty regarding inputs to power analysis and sample size estimation, refer to the tutorial in this series on *Uncertainty in Power and Sample Size Estimation*.

Content A: Features and Assumptions

Study design description: Ki-67 and resveratrol example

In the Ki-67 example, the inference relates to the differences in mean change in Ki-67 among three populations. The outcome variable for each sample is continuous (change in % staining) with an unknown, but finite variance of the change in each population, σ_1^2 , σ_2^2 and σ_3^2 . Since we base the % staining on a large number of tumor cells, we may reasonably to assume a normal distribution value for Ki-67 value. As linear functions of normally distributed quantities are also normally distributed, the change in Ki-67 from before treatment to after treatment is normally distributed. Finally, the *a priori* stated hypothesis regards the mean differences in change of Ki-67 and whether the mean differences are 0%. These are the features that make the example suitable for a one-way ANOVA.

In conducting a one-way ANOVA we make the assumption that the individual change values are randomly sampled from one of three well-characterized populations and that the observations within a sample are independent of each other, i.e. that there is no clustering between subjects or units of observation. In most cases, we can easily verify this assumption. As noted above, we assume an approximately normal underlying distribution of change in Ki-67 with resveratrol, and normal or approximately so for the other supplement or placebo . Finally, we make the assumption that $\sigma_1^2 = \sigma_2^2 = \sigma_3^2$.

The one-way ANOVA as a <u>General Linear Model (GLM)</u>

A general characterization of the one-way ANOVA can be made using the general linear model (GLM), $Y = X \beta + \varepsilon$. For the test of the mean change in Ki-67, Y is an $(n_1 + n_2 + n_3) \times 1$ matrix of Ki-67 change values, X is an $(n_1 + n_2 + n_3) \times 3$ matrix of 1s and 0s, β is a 1 x 3 matrix of the unknown regression coefficients, β_1 , β_2 , and β_3 - in this case the mean changes in Ki-67 in the resveratrol, other supplement and placebo groups, and ε is an $(n_1 + n_2 + n_3) \times 1$ matrix that represents the random deviation of a single Ki-67 change value from its group mean change. The Y and X matrices are shown below:

Y_Δ	X ₁	X ₂	X ₃
Y _{1,1Pre} -Y _{1,1Post}	1	0	0
Y _{1,2Pre} -Y _{1,2Post}	1	0	0

		•	•
Y _{1,n1Pre} -Y _{1,n1Post}	1	0	0
Y _{2,1Pre} -Y _{2,1Post}	0	1	0
Y _{2,2Pre} -Y _{2,2Post}	0	1	0
•	•	•	•
-	•	•	•
Y _{2,n2Pre} -Y _{2,n2Post}	0	1	0
Y _{3,1Pre} -Y _{3,1Post}	0	0	1
Y _{3,2Pre} -Y _{3,2Post}	0	0	1
•	•		
•		-	-
Y _{3,n3Pre} -Y _{3,n3Post}	0	0	1

The assumptions of the GLM are:

- **Existence**: For any fixed value of the variable *X*, *Y* is a random variable with a certain probability distribution having finite mean and variance.
- Independence: The Y-values are statistically independent of one another.
- Linearity: The mean value of Y is a straight-line function of X.
- **Homoscedasticity (equal variances)**: The variance of *Y* is the same for any value of *X*. That is,

$$\sigma_{Y|X}^2 = \sigma_{Y|X=1}^2 = \sigma_{Y|X=2}^2 = \dots = \sigma_{Y|X=x}^2$$

• **Normal Distribution**: For any fixed value of *X*, *Y* has a normal distribution. Note this assumption does *not* claim normal distribution for *Y*.

To test the hypothesis H₀: $\mu_{\Delta Ki-67, resveratrol} = \mu_{\Delta Ki-67, other supplement} = \mu_{\Delta Ki-67, placebo}$ we determine if the between-group variation is significantly larger than the within-group variation. To perform this test, we calculate the Mean Square Between (MS_{Between}) and the Mean Square Within (MS_{Within}) by dividing the SS_{Between} and SS_{Within} by their respective degrees of freedom:

 $MS_{Between} = SS_{Between} / (k-1)$

$$MS_{Within} = Wi_{thin} / (n-k),$$

where k = 3, SS_{Between} =
$$\sum_{i=1}^{k} \sum_{j=1}^{n_i} (Y_{ij} - \overline{Y_i})^2$$
, SSWithin = $\sum_{i=1}^{k} \sum_{j=1}^{n_i} (\overline{Y_i} - \overline{\overline{Y}})^2$, Y_{ij} is the ith observation

in group j, $\overline{Y_i}$ is the mean of group i, and $\overline{\overline{Y}}$ is the overall mean. We summarize this information in what is called an Analysis of Variance (ANOVA) table:

Source	Sum of Squares	Degrees of Freedom	Mean Square	Variance Ratio (F)	p-value
Between	SS _{Between}	k-1	MS _{Between}	F	$\Pr(F_{k-1,n-k}>F)$
Within	SS_{Within}	n-k	$MS_{Within} \texttt{=} \sigma_{Y X}^2$		
Total	SS _{Total}	<i>n</i> -1			

Under the null hypothesis, the *F* statistic will have an *F* distribution with *k*-1 and *n*-*k* degrees of freedom. If $F > F_{k-1,n-k,1-\alpha}$ then we reject H₀.

B.1 Inputs for Power analysis

A power analysis for the differences in mean change consists of determining the achievable power for a specified: difference between means under the stated H₀ and under the stated H_1 , sample size, standard deviation of the difference, and α -level. By varying these four quantities a set of power curves can be obtained that show the tradeoffs.

Information about mean change values and variability of change can be obtained from the published literature. Sample size can be varied over a feasible range of values, and various values of α can be selected to illustrate the sensitivity of the results to conservative vs. liberal choices for the Type I error rate.

For the change in Ki-67 expected with resveratrol, the other supplement and placebo, we look to a study examining change in Ki67. A standard deviation of 14% for change in Ki67 with resveratrol was reported.¹ For this example we will assume that the variances in the three groups are all equal to $(14\%)^2$, or $196\%^2$.

When using information from studies in the literature, it can't be assumed that the means and standard deviations are known quantities. They are estimates and as such lead to uncertainty in estimated power. For further discussion about uncertainty refer to the Tutorial 0: Uncertainty in Power and Sample Size Estimation.

Specification of the differences between means for change, μ_{Ai} - μ_{Ai}

As noted above, subject matter considerations dictate the choice of a value for the difference between the null and alternative mean change. The goal is to specify the smallest difference that would be considered scientifically important. For the pairedsample Ki-67 example we consider a 20% difference between resveratrol and placebo,

specific ρ value, the standard deviation of change is obtained as: $s_{\Delta} = \sqrt{s_{pre}^2 + s_{post}^2 - 2\rho s_{pre} s_{post}^2}$, where s²

and s are the sample variance and standard deviation, respectively. Rarely is the variance reported in a publication. If it is, the standard deviation is obtained as the square root of the variance. GLIMMPSE Tutorial: One-way Analysis of Variance (ANOVA) 7

¹ It should be noted that in some publications, standard error values are reported. Standard errors refer to the precision of a mean, not to the variability in a single sample. To convert a standard error to a standard deviation, multiply the standard error by the square root of the sample size. Often separate standard deviations of the pre- and post- measures are reported instead of the standard deviation of the change. In this case, assumptions must be made about the correlation, p, between the pre- and post- measures in order to obtain an estimate for the standard deviation of change. A value of 0 for p means the pre- and post- measures are uncorrelated while a value of 1 means they are perfectly correlated. Low values of p would lead to conservative power and sample size estimates while large values of p would lead to liberal ones. For a

and a 20% difference between the other supplement and placebo, as biologically important.

B.2 Inputs for sample size estimation

Sample size estimation for multiple means from paired observations consists of determining the required sample size to achieve a specified level of power for a given difference between the mean changes under the stated H_0 and under the stated H_1 , the common standard deviation of the change and α -level. By varying these four quantities we can obtain a set of sample size curves that show the tradeoffs.

As with power analysis, information about mean values and variability can be obtained from the published literature. Uncertainty in these values should be incorporated into the sample size estimation by either allowing those values to vary over a reasonable range, e.g. from 0.5 times up to twice the standard deviation, or by using sampling variability to obtain confidence intervals for power or sample size. Power can be varied over a desired range of values, and various values of α can be selected to illustrate the sensitivity of the results to conservative vs. liberal choices for the Type I and Type II error rates.

Content C: How to use the software

How to perform the analysis in GLIMMPSE

To start GLIMMPSE 2.0 beta, type <u>http://samplesizeshop.com/calculate-power-and-sample-size-now/</u> in your browser window or visit <u>www.SampleSizeShop.com</u> and click on the GLIMMPSE tab, then on GLIMMPSE 2.0.0 Beta is Here! Google Chrome is the suggested browser for this application.

C.1 Power analysis using Guided Study Design mode

Guided Study Design mode is suggested for most users. For those familiar with Muller, LaVange, Ramey and Ramey (1992) we recommend using Matrix Study Design mode, which is illustrated in a separate tutorial.

Start Your Study Design

Welcome to GLIMMPSE. The GLIMMPSE software calculates powerand sample size for study designs with normally distributed outcomes. Select one of the options below to begin your power or sample size calculation.

Guided Study Design	Matrix Study Design	Upload a Study Design
Build common study designs including ANOVA, ANCOVA, and regression with guidance from the study design wizard. This mode is designed for applied researchers including physicians, nurses, and other investigators.	Directly enter the matrices for the general linear model. This mode is designed for users with advanced statistical training.	If you have previously saved a study design from GLIMMPSE, you may upload it here. Click browse to select your study design file.
Select	Select	Browse_

Selecting Guided Study Design takes you to the Introduction page:

GLIMM	PSE beta Documentation Downloads SampleSizeShop.com
Calculate	Introduction The GLIMMPSE wizard will guide you through several steps to calculate power or sample size.
Solving For	Use the forward and back arrows to navigate through the wizard. You may save your work at any time by clicking the "Save Design" link at the lower right of the screen.
Sampling Unit	The "Cancel" link, also at the lower right of the screen, allows you to cancel your current work and begin a new study design. The help manual may be accessed by
Responses	clicking the "Help" link.
Hypothesis	General steps for a power analysis are listed on the left hand side of the screen. We
Means	
Variability	The lype lerror rate The independent and dependent variables
Options	 The primary study hypothesis of interest Choices for group means Choices for standard deviations and correlations for study outcomes The statistical test and additional display options Click the forward arrow to begin.

Throughout your use of the GLIMMPSE website, use the blue arrows at the bottom of the screen to move forward and backwards as you enter you values. The pencil symbols beside the screen names on the left indicate required information that has not yet been entered. In the above picture, the pencils appear next to the *Solving For* and the *Type I Error* screen names.

Once the required information is entered, the pencils become green check marks. A red circle with a slash through it indicates that a previous screen needs to be filled out before the screen with the red circle can be accessed. Search for a pencil beside a screen name in the previous tabs to find the screen with missing entries.

Once you have read the information on the Introduction screen, click the forward arrow to move to the next screen.

The Solving For screen allows you to select Power or Sample Size for your study design. For the purposes of this tutorial, click Power. Click the forward arrow to move to the next screen.

Calculate	Would you like to solve for power or sample size?
Start	To begin your calculation, please indicate whether you would like to solve for power or total sample size.
✓ Solving For	If you have a rough idea of the number of research participants you will be able to
🥔 Type I Error	recruit, then solving for power may be more beneficial.
Sampling Unit	If you have fewer restrictions on recruitment and would like to ensure a well-powered study, then solving for sample size is likely to be more useful.
Responses	stady, then sowing for sample size is intery to be more decidi.
Hypothesis	Power Total Sample Size
Means	Total Sample Size
Variability	
Options	
	📢 🕪 🔍 Help 🕌 Save Design 🔻 Cancel

The Type I Error screen allows you to specify the fixed levels of significance for the hypothesis to be tested. Once you have entered your values, click the forward arrow to move to the next screen.

	A Type I error occurs when a s	cientist declares a difference when none is actually	
Start	often referred to as α. Type I e	s the probability of a Type Ferror occurring, and is fror rates range from 0 to 1. The most commonly used	
 Solving For 	values are 0.01, 0.05, and 0.1		
Type I Error	Enter each Type I error value i	nto the text box and click "Add". You may enter up to 5	
Sampling Unit	values. To remove a value, sel	ect the value in the list box and click the "Delete"	
Responses			
Hypothesis	Type T Error Values.	Add Delete	
Vleans	.01	^	
/ariability	.1		
Options			
optiono			
	44.55		

Read the information on the *Sampling Unit: Introduction* screen and click next to move to the next screen.

On the *Study Groups* screen, click on *Multiple Groups*. In the drop down menu that appears, enter *Treatment* as your predictor and *Resveratrol*, *Supplement 2* and *Placebo* as your categories.

Calculate	Study Groups
Start	Describe the predictors which assign independent sampling units into groups, such as gender or treatment. If the study includes only one group, select the "One group" button. If the study includes multiple groups, select the "Multiple groups" button.
Sampling Unit	One group
✓ Study Groups	Multiple groups
✓ Covariate	In the table below, specify the fixed predictors. The choice of study design determines the values of fixed predictors (such as drug dose or gender). A common
 Clustering 	example of a fixed predictor is treatment group, for which the independent sampling
 Relative Group Sizes 	unit is randomized to a placebo or an active drug group.
 Smallest Group Size 	To enter fixed predictors:
Responses	1. Enter the name of each predictor in the left text box and click "Add". For
Hypothesis	example, one might enter "treatment" as a predictor. 2. Select the predictor from the left text box to display the current list of values
Means	associated with the predictor. To add a new value, enter the value in the
Variability	"treatment", then add the values "drug" and "placebo."
Options	Each predictor should have at least two values.
	Predictor Category Add Delete Add Delete
	Treatment Placebo Resveratrol Supplement 2

The *Relative Group Sizes* screen allows you enter the ratio between the three groups. For this example, assume the groups are of equal size and leave all of the numbers as 1.

A shull be	Deletive	Crown Siz		
Calculate	Relative	Group SIZ	5	
	Specify wh	ether the study	/ subgroups are of equal or unequal size.	
start	For equal of	aroup sizes, se	elect a "1" in the drop-down list next to each study	
ampling Unit	subgroup.	This is the def	ault study design.	
Study Groups	For unequa	al group sizes,	specify the ratio of the group sizes. For example, consider	
Covariate	a design w	ith an active d	rug group and a placebo group. If twice as many study	
Clustering	group, and	a value of "1"	would be selected for the active drug group.	
Relative Group Sizes				
 Smallest Group Size 	Relative Group Size	Treatment		
esponses	1 💌	Placebo		
lypothesis	1 💌	Resveratrol		
leans	1	Supplement 2		
ariability		Copposition 2		
Options				
			🔍 Help 🛛 🚼 Save Design	🛛 样 Can

Use the *Sample Size* screen to specify the size of the smallest group for your sample size(s). Although only one sample is being used for this example, entering multiple values for the smallest group size allows you to consider a range of total sample sizes.

Calculate	Size of the Smallest Group
Start	Enter the number of independent sampling units (participants, clusters) in the smallest group in the study. If your group sizes are equal, the value is the same for all groups. You may enter multiple values for the amellest group size in order to
Sampling Unit	consider a range or total sample sizes.
🗸 Study Groups	Enter one or more sample sizes in the text box below and click "Add". To remove a
✓ Covariate	sample size from the list, highlight it and click the "Delete" button.
 Clustering 	
✓ Sample Size	Size of the Smallest Group: Add Delete
Responses	5
Hypothesis	10 15
Means	20 *
Variability	
Options	
	📢 🕪 🥄 Help 🚡 Save Design 🔻 Cancel

Read the *Responses Introduction* screen, and click the forward arrow when you have finished.

The *Response Variable* screen allows you to enter the response variable(s) of interest. Enter the three response variable, Ki-67.

Calculate	Response Variables
Start	Enter the response variables in the table below. For example, in a study investigating cholesterol-lowering medication, the response variable could be HDL,
Sampling Unit	LDL, and total cholesterol.
Responses	Note that repeated measurement information will be addressed on the next screen.
Response Variables	Response Variables: Add Delete
Repeated Measures	K1.67
Hypothesis	
Vleans	
/ariability	
Options	

The *Repeated Measures* screen should be skipped, as there are no repeated measures for this example.

Read the *Hypothesis: Introduction* screen, then click the forward arrow to move to the *Hypothesis* screen.

The *Hypotheses* screen allows you to specify the hypothesis which most closely resembles your primary study hypothesis, and to enter the known mean values for each hypothesis. After entering your hypothesis, click the forward arrow.

Calculais	Hypotheses
Start	The list below shows the hypotheses which are available for the current study design. Select the hypothesis which most closely resembles your primary study hypothesis. Trends within an interaction hypothesis are specified in the "Interaction"
Sampling Unit	tab. This hypothesis will be used to determine power for your study.
Responses	The tab highlighted in "white" indicates the currently selected hypothesis. For more
Hypothesis	information about the type of hypothesis, click the magnifying glass icon.
✓ Hypothesis	Grand mean 🔍 Main Effect 🔍 Trend 🔍
Means	Select one predictor of interest for the main effect hypothesis.
Variability	Between Participant Factors
Options	Treatment
	📢 🕪 🕓 Cancel

Read the information on the *Means: Introduction* screen, then click the forward arrow. The *Mean Differences* screen allows you to specify the difference between the null and alternative hypothesis means. For this example, enter 20%, or 20, in the first box, 20 in the second, and 0 in the last box.

Start	The table be subgroup. The	low shows the mean value ne study subgroups are lis s are listed across the tor	es for each outcome within each ted along the left hand side of	ch study the table, and	
Sampling Unit	Enter the me		baanse far oo eb autoomo withi	n oo ob otudu	
Responses	subgroup. Th	en values you expect to one table should contain at	least one value that is non-zer	n each study o. Also, at least	
Hypothesis	two subgrou amount.	ps should have means wh	ich differ by a scientifically me	aningful	
Means	Treatment	Ki-67			
 Means Scale Factors for Means 	Placebo	0			
Variability	Resveratrol	20			
Options	Supplement 2	20			

The true mean difference is uncertain. The *Beta Scale Factors* screen allows you to see how power varies with the assumed difference, so that you can allow it to vary over a reasonable range. GLIMMPSE allows this to be from 0.5x to 2x the stated difference, e.g. from 10% to 20% to 40%. Click Yes, then click on the forward arrow to continue.

Calculate	Flexible Means
Start	Power and sample size results will change depending on the mean values specified on the previous screen. It is not possible to know exact values for these means until the experiment is observed. To account for this uncertainty, it is common to calculate
Sampling Unit	power for the mean values as specified, the mean values divided by 2, and the mean values multiplied by 2
Responses	
Hypothesis	Yes, include power calculations for the mean values as entered, the mean values divided by 2, and the mean values multiplied by 2.
Means	
🖌 Mean Differences	
Beta Scale Factors	
Variability	
Options	
	Help 🚡 Save Design 🔻 Cancel

Read the information on the *Variability: Introduction* screen, then click the forward arrow to continue.

The *Within Participant Variability* screen allows you to specify the expected variability in terms of standard deviation of the outcome variable. For this example, the standard deviation is 14%. Enter 14, and the other boxes will self-populate. Click on the forward arrow to move to the next screen.

Calculate	Within Participant Variability
Start	For a given research participant, responses vary across response variables and across repeated measurements. The amount of variability can dramatically impact power and sample size. Click on each of the tabs below to describe the variability.
Sampling Unit	you expect to observe for the response variables and each within-participant factor.
Responses	Responses
Hypothesis	Enter the standard deviation you expect to observe for each response. Note that
Means	GLIMMPSE currently assumes that the standard deviation is constant across repeated measurements
Variability	
✓ Within Participant ✓ Variability	
🗸 Sigma Scale Factors	
Options	
	🐳 🎶 🔍 Help 🎽 Save Design 🔻 Cancel

The true variability in Ki-67 is also uncertain. To see how power varies with the assumed standard deviation, you can allow the standard deviation to vary over a reasonable range. GLIMMPSE allows this to be from 0.5x to 2x the stated standard deviation, e.g. from 7% to 14% to 28%. Click Yes, then click the forward arrow to continue.

Calculate Start Sampling Unit Responses Hypothesis Means Variability Variability Variability Sigma Scale Factors Options	Flexible Variability On the previous screens, you entered state GLIMMPSE has used these values to cate describes the overall variability. Changes in variability can dramatically at possible to know the variability until the encertainty, it is common to calculate por variability. By clicking the box below, GLIMMPSE we covariance matrix, the covariance matrix multiplied by 2. Ives, include power for the covariance matrix 2.	andard deviations and correlat loulate a covariance matrix wi ffect power and sample size r experiment is observed. To ac- wer or sample size for alternat fill calculate power using the c divided by 2, and the covaria the covariance matrix divided by 2	tions. nich esults. It is not count for this ive values for alculated nce matrix	matrix multiplied by
		4 Help	🔠 Save Design	K Cancel
GLIMMPSE Tutorial: One-w	ay Analysis of Variance (ANOVA)			16

Read the information on the Options screen, then click the forward arrow to continue.

For the one-sample test of a single mean, the available tests in GLIMMPSE yield equivalent results. Click on any one of the tests in the *Statistical Test* screen and then click the forward arrow to continue.

Calculate	Statistical Tests
Start	Select the statistical tests to include in your calculations. For study designs with a single outcome, power is the same regardless of the test selected.
Sampling Unit	Note that only the Hotelling-Lawley Trace and the Univariate Approach to Repeated Measures are supported for designs which include a baseline covariate
Responses	Hotelling-Lawley Trace
Hypothesis	Pillai-Bartlett Trace
Means	Wilks Likelihood Ratio
Variability	Univariate Approach to Repeated Measures with Box Correction Univariate Approach to Repeated Measures with Geisser-Greenhouse Correction
Options	Univariate Approach to Repeated Measures with Huynh-Feldt Correction
 Statistical Test 	Univariate Approach to Repeated Measures, uncorrected
 Confidence Intervals 	
 Power Curve 	
	Help Help Karcel

Leave the box checked in the *Confidence Interval Options* screen, and click forward to continue to the next screen.

Power analysis results are best displayed on a graph. To obtain a plot, first uncheck No thanks on the *Power Curve Options* screen.

Calculate	Power Curve Options You may optionally create a power curve image for your results by unchecking this
Start	checkbox. Then select the values you would like to display on the power curve by selecting the appropriate options below.
Sampling Unit	✓ I do not want to create a power curve.
Responses	

From the pull down menu that appears once you have unchecked the box, select the variable to be used as the horizontal axis (e.g. *Total sample size* or *Variability Scale Factor*). GLIMMPSE will produce one power plot based on specific levels of the input

variables that you specify on this page. If you specified more than one value for an input variable, choose the specific level you want GLIMMPSE to use to plot the power curve.

Calculate	Power Curve Options
Start	You may optionally create a power curve image for your results by unchecking this checkbox. Then select the values you would like to display on the power curve by selecting the appropriate options below.
Sampling Unit	I do not want to create a power curve.
Responses	1. Select the quantity to display on the horizontal axis of the power curve (the vertical axis will display the power value).
	Regression Coefficient Scale Factor
Hypothesis	2. Add data series to the plot. Select values for each variable below. Click add to include sample size values matching
Means	these criteria as a data series on the plot. To remove a data series, highlight it in the list box and click "Remove data series".
Variability	Total Sample Size 15 💌
Options	Variability Scale Factor 1
 Statistical Test 	Statistical Test Univariate Approach to Repeated Measures, uncorrected
 Confidence Intervals 	Type I Error 0.05 💌
Power Curve	Data Series Label
	Add Delete
	: Sample Size=15 Test=Univariate Approach to Repeated Measures, uncorrected Var. Scale=
	N PP Help 🚡 Save Design 🔻 Cancel

The power curve and table results for these inputs are shown in Section D below.

C.2 Sample size estimation with GLIMMPSE

To start, click on *Total Sample Size* in the *Solving For* screen. Click on the forward arrow to move to the next screen.

Calculate	Would you like to solve for power or sample size?
Start	or total sample size.
 Solving For Desired Power 	If you have a rough idea of the number of research participants you will be able to recruit, then solving for power may be more beneficial.
 Type I Error 	If you have fewer restrictions on recruitment and would like to ensure a well-powered
Sampling Unit	study, then solving for sample size is likely to be more useful.
Responses	© Power
Hypothesis	Total Sample Size
Means	
Variability	
Options	
	📢 🕪 🔍 Help 🎽 Save Design 🔻 Cancel

Enter the values for desired power, then click the forward arrow to move to the next screen.

Calculate	Power Values
Start	Enter the desired power values in the list box below. Power values are numbers between 0 and 1. Higher values correspond to a greater likelihood of rejecting the pull brochesis. Common values are 0.8 or 0.9 attouted 0.0 or bidder is usually
 Solving For 	preferred.
Desired Power	Type each value into the list box and click "Add". To remove an item, highlight the
Type I Error	value and click the "Delete" button.
Sampling Unit	
Responses	Power values: Add Delete
Hypothesis	.8
Vleans	.95
/ariability	Ψ.
Options	
-	
	📢 🅪 🦳 Help 🎽 Save Desig

The remaining screens are filled in as above for power.

Content D: Interpret the results

Power analysis interpretation

For the power analysis inputs in Guided Study Design Mode (Section C.1), GLIMMPSE produces a curve showing the relationship between achievable power, mean difference (beta scale), standard deviation (variability scale), and fixed values of total sample size and level of significance. A complete downloadable table of results in Excel.csv format is also produced. The plot below shows achievable power over a range of differences in mean change in Ki-67 with an α -level of 0.05 (two-sided) and a sample size of 15 per group.

It can be observed in the graph below that above a certain level of variability, power is much less sensitive to changes in specified values. The sensitivity of power to assumptions within a certain range of values has been called the slippery slope of power. In order to avoid the slippery slope, it is best to assume a large amount of variability and/or a large difference between null and alternative means.

Sample size estimation interpretation

For the sample size estimation inputs in Guided Study Design mode above, GLIMMPSE produces a downloadable table showing the relationship between required sample size, desired power, level of significance, variability, and difference between null and alternative hypothesis means. This can be saved in Excel.csv format and plotted.

Content E: References cited

List of matrices used in calculation:

 $\mathbf{Es}(\mathbf{X}) = \begin{bmatrix} 1.0000 & 0.0000 & 0.0000 \\ 0.0000 & 1.0000 & 0.0000 \\ 0.0000 & 0.0000 & 1.0000 \end{bmatrix}$ $\mathbf{B} = \begin{bmatrix} 0.0000 \\ 20.0000 \\ 20.0000 \end{bmatrix}$ $\mathbf{C} = \begin{bmatrix} 1.0000 & -1.0000 & -0.0000 \\ 1.0000 & -0.0000 & -1.0000 \end{bmatrix}$ $\mathbf{U} = \begin{bmatrix} 1.0000 \\ 0.0000 \end{bmatrix}$ $\mathbf{\Sigma}_E = \begin{bmatrix} 0.0000 \\ 0.0000 \end{bmatrix}$

For the one-way ANOVA, GLIMMPSE works with the matrices listed above in making the computations. Since three means are being tested the essence matrix Es(X) is of dimension 3 x 3. The Θ_0 matrix represents the mean under H_0 and the Σ_e matrix represents the between-subject variance. The **B** is a vector of regression coefficients and **C** is the 2 x 3 contrast matrix for **B**.

References

Muller KE, LaVange LM, Ramey SL, Ramey CT (1992). Power Calculations for General Linear Multivariate Models Including Repeated Measures Applications. *Journal of the American Statistical Association*, 87:1209-1226.

Content F: Exhibits, tables, figures

Ki-67 staining

Figure 2

Immunohistochemical detection in primary pretreatment biopsies of: (A) a low percentage (17%) of Ki-67-positive nuclear staining; (B) a high percentage (93%) of Ki-67-positive nuclear staining.

From: Br J Cancer. 2008 October 7; 99(7): 1121–1128. Published online 2008 September 2. doi: 10.1038/sj.bjc.6604633

Copyright/LicenseRequest permission to reuse